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A new surface algorithm has been incorporated into the random-vortex method for the 
simulation of 2-dimensional laminar flow, in which vortex particles are deleted rather than 
reflected as they cross a solid surface. This involves a modification to the strength and random 
walk of newly created vortex particles. Computations of the early stages of symmetric, 
impulsively started flow around a circular cylinder for a wide range of Reynolds numbers 
demonstrate that the number of vortices required for convergence is substantially reduced. 
The method has been further extended to accommodate forced convective heat transfer where 
temperature particles are created at a surface to satisfy the condition of constant surface tem- 
perature. Vortex and temperature particles are handled together throughout each time step. 
For long runs, in which a steady state is reached, comparison is made with some time- 
averaged experimental heat transfer data for Reynolds numbers up to a few hundred. 
A Karman vortex street occurs at the higher Reynolds numbers. 0 1989 Academic PISS, IX. 

1, INTRODUCTION 

In two dimensions, viscous flow of an incompressible fluid with constant 
kinematic viscosity (v) is described by two coupled partial differential equations: the 
vorticity equation 

aa 
at- - -(u.v)u+vv20 

and a Poisson equation 

V2u = -V A (ok). (2) 

w is the magnitude of vorticity, u is velocity, t is time, and k is a unit vector normal 
to the plane of the flow. Equation (1) may be solved by the operator-splitting 
scheme of Chorin [ 11. The equation is separated into the non-linear Euler equation 
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and a linear diffusion equation 

am i 1 z D= 
v v=w. (4) 

The processes of convection and viscous diffusion are denoted by the suffices C and 
D, respectively. The time-stepping procedure by which these equations are solved 
is the random-vortex method. Equation (3) is solved by an inviscid calculation, in 
which vortex particles are convected in the velocity field, obtained from Eq. (2) by 
the Biot-Savart law of interaction [l-3] or by the vortex-in-cell method (e.g., 
[4, 51). An extensive review of inviscid vortex methods is given by Leonard [6]. 
Equation (4) is solved by superimposing normally distributed random walks onto 
the positions of the vortex particles. The random-vortex method has been 
demonstrated to represent a weak solution of the Navier-Stokes equations [7]. 

The equation for forced convective heat transfer, 

aT 
-g= -(u.V)TfaV=T, (5) 

where T is temperature and a is the thermal diffusivity, is of the same form as 
Eq. (1) and can be solved in an analogous way, with temperature particles in place 
of vortex particles. Vortex and temperature particles are convected and diffused 
together. We note that a more consistent nomenclature would refer to “vorticity 
and temperature transfer or transport.” However, we continue to use the conven- 
tional expression “heat transfer.” 

The advantages of such a random-particle method are well known. The numeri- 
cal algorithms are relatively straightforward to set up. Problems of numerical 
diffusion associated with fixed mesh schemes are, to a large degree, avoided [6] 
and the operator-splitting scheme improves in accuracy as the Reynolds number 
increases [8, 93. 

The use of the vortex-in-cell method is advantageous for the computation of the 
velocities of very large numbers of particles: the operation count for each time step 
is of order K log K, where K is the number of nodes on the mesh, whereas the Biot- 
Savart law of interaction for L particles has an operation count of order L2. 
Furthermore, where a solid surface forms a boundary to the flow, the vortex-in-cell 
method enables the condition of zero normal velocity to be satisfied simply and 
accurately if a mesh boundary is made to coincide with the surface [lo]. 

In order to enforce the boundary condition of zero tangential velocity, new 
vortex sheets [2, 111 or particles [lo] are created along the surface at each time 
step. In [lo], the new particles are created at the surface nodes of the vortex-in-cell 
mesh. The solution of Eq. (2) is used to obtain the tangential velocity at these 
nodes, each of which lies at the midpoint of a surface segment. The tangential 
velocity is reduced to zero by assigning to the new particles a circulation equal lo 
the product of the tangential velocity and the surface-segment length. In this paper, 
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the boundary condition of constant surface temperature will be maintained by 
creating new temperature particles at the surface nodes. 

Following Chorin [l], particles which cross the solid surface following the 
random walk may be “reflected” back across the boundary to their mirror-image 
positions within the fluid. This surface algorithm, which we will refer to as 
REFLECT, is discussed in detail in [12]. 

Impulsively started flows around a circular cylinder using the random-walk 
method have been investigated by Cheer [2] and Smith and Stansby [lo]. Smith 
and Stansby compared with analytical time-series solutions, accurate finite-difference 
computations and experiment for a wide range of Reynolds numbers. The agreement 
between the different methods establishes this flow as a useful benchmark test. It 
was shown that convergence of the flow characteristics required more vortex 
particles to be introduced at the cylinder surface per time step for longer than for 
shorter runs and for higher than for lower Reynolds numbers. There was a tendency 
for the wake to roll up too tightly if too few were introduced. For reasons 
of efficiency and computer storage limitations, the use of such large numbers of 
particles is undesirable for long flow simulations of practical interest, in which the 
Karman vortex street becomes established. 

In this paper, we introduce an alternative surface algorithm which is shown to 
reduce the number of particles required for the convergence of the flow charac- 
teristics. Any particles which cross the solid surface following the random walk are 
removed from the calculation. New particles are again created along the surface at 
each time step in order to enforce the conditions of zero tangential velocity (and 
constant temperature); the correct fluxes of circulation and heat across the surface 
are maintained by adding the circulation and heat carried by the deleted particles 
to that carried by the newly created particles. A modification is required to the first 
random walk of the new particles in order to maintain a constant normal spatial 
derivative in the vorticity and temperature at the surface throughout a time step. 
We will refer to the new surface algorithm as ABSORB. 

ABSORB is tested against exact steady-state and transient solutions of the 
l-dimensional diffusion equation in order to verify the algorithm and is then incor- 
porated into the random-walk/vortex-in-cell method. Its efficiency, in terms of the 
total number of particles required for convergence, is compared with that of 
REFLECT for an impulsively started flow around a circular cylinder. 

The random-particle technique applied to temperature particles is then combined 
with the random-vortex method to simulate forced convective heat transfer from 
the cylinder. In order to allow comparison with some time-averaged experimental 
data, the flow is continued over a sufficiently long period for a steady state to be 
reached; this involves periodic vortex shedding for Reynolds numbers above about 
40 (Re = 2aU/v, where a is cylinder radius and U is onset flow velocity). We com- 
pute heat transfer for Reynolds numbers between 23 and 289 and Prandtl numbers 
(Pr = v/a) of 0.7 and 7 (corresponding to air and water, respectively). 

We thus present for the first time (to our knowledge) a random-particle simula- 
tion of transient heat transfer in a viscous flow which may separate from a body 
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and include a Karman vortex street. Clearly it is straightforward to input any time- 
variation of onset velocity into such a computation. An important practical point 
is that particle/mesh schemes are readily vectorised for supercomputing. We use the 
long vector (65535) Cyber 205 at the University Regional Computer Centre with 
code that is nearly fully vectorised. 

2. THE SURFACE ALGORITHMS: REFLECT AND ABFORB 

For the purpose of explaining the surface algorithms REFLECT and ABSORB, 
we consider viscous diffusion in a layer of fluid adjacent to the solid surface through 
a single time step of duration dt. The thickness of the layer is of the order of the 
standard deviation of the random walk: ,/m for vortex particles and dm 
for temperature particles. If At is sufficiently small, the effects of streamwise 
diffusion and surface curvature may be neglected within the layer. We define n as 
a spatial coordinate normal to the surface, with the flow domain in positive n and 
n = 0 located at the surface. Equation (4), the diffusion equation for vorticity, and 
the analogous equation for the diffusion of heat may be approximated by 

au a*0 
at=v,n,, O<n&/@zG) 

aT a*T 
at=” 2’ O<il&@Zj 

(6) 

(7) 

We consider a node of the vortex-in-cell mesh at the midpoint of a surface segment 
of length As and denote by y As the circulation which must be created there in one 
time step in order to satisfy the zero tangential velocity boundary condition. A con- 
stant surface temperature is also to be maintained. The fluxes of circulation and 
heat at the node and, equivalently, the gradients of vorticity and temperature are 
assumed to be constant throughout the time step. The following description con- 
cerns the solution of Eq. (6) for o(n, t). The slight difference between this procedure 
and that for the solution of Eq. (7) for T(n, t) is explained at the end of the section. 

The boundary-value problem for positive n within the real flow is equivalent to 
an initial-value problem in a domain extended to negative n. w is divided into two 
parts, as illustrated in Fig. la. At the start of the time step (t = 0), the parts of 
the vorticity in positive and negative n are denoted by w,(n, 0) and o,(n, 0), 
respectively, so that 

o,(n, 0) = 204 - o*( -n, O), n > 0, (8) 

where w,, = ~(0, 0). The linearity of Eq. (6) allows us to superimpose solutions for 
each part of w : 

o(n, t) = o,(n, t) + w,(n, t). (9) 
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FIG. 1. The initial-value problem for the diffusion of vorticity o. j= tan-‘( -y As/(v AI)), the 
gradient of vorticity at the surface. (a) w is divided into two parts: w1 and w2. (b) w2 is subdivided into 
two parts, u$, and of2 for the surface algorithm REFLECT. (c) o2 is subdivided into two parts, o$, and 
ox& for the surface algorithm ABSORB. 

At t = 0, the vortex particles represent o,(n, 0). At I = At, the end of the time step, 
w,(n, At) is approximated by superimposing a random walk onto the initial posi- 
tions of the particles. The difference between the surface algorithms REFLECT and 
ABSORB lies in the treatment of those particles which are carried across n = 0 by 
the random walk. In both algorithms, it is necessary to determine w,(n, At) in the 
positive n domain. In REFLECT, the reflected particles represent a part of 
o&r, At) and the remainder is represented by new particles. In ABSORB, w,(n, At) 
is represented entirely by new particles. 

REFLECT. w2 is subdivided into two parts, WY, and o&, as illustrated in Fig. lb 
at t = 0. OF, is the mirror-image of wi. The linearity of Eq. (6) again allows us to 
superimpose solutions for each part of w: 



354 SMITH AND STANSBY 

The reflection of particles back across n = 0 gives a solution for the symmetrical 
vorticity distribution w,“l + o1 . Within positive n, o&(n, At) is represented by the 
reflected particles and wh(n, At) is represented by the creation of new vortex 
particles. 

The solution of the diffusion equation for we(n, At), n >O, which can be 
conveniently derived using the Laplace transform method, is given by 

o&(n, At) = $ s d’ Ph t) dt, 
0 

where P(n, t) is half of a normal distribution 

Ph t) = & exp 
( > 

Iv1 , -- n > 0 

yz 
I 
om c&n, At) dn. 

(11) 

(12) 

(13) 

Equation (11) can be approximated by the summation 

d2h At) N 5 ,f Ph [i), 

r=l 
(14) 

where 

ti=iAt/M. (15) 

This function is represented by the creation of M new vortex particles, each carry- 
ing a circulation of yAs/M, with the n-coordinate of the ith particle selected at 
random from the distribution P(n, ti). 

ABSORB. If particles are removed from the calculation when they cross n = 0, the 
whole of o,(n, At) within positive n must be represented by the creation of new 
vortex particles. In order to calculate this function, however, w2 is again subdivided 
into two parts: 

w2(n, 2) = 4(n, t) + d2(n, t) 

as illustrated in Fig. lc at t = 0: 

(16) 

4(n, 0) IL;(O’ 1 n-c0 
3 n > 0. (17) 

The solution of the diffusion equation for o&(n, At), n> 0, which can again be 
conveniently derived using the Laplace transform method, is given by 

dl(nT At) = y21 Q(n), (18) 
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where 

Y21 = 
I 
,a o;,(n, At)dn=w,Jm). 

wt2(n, At), n > 0, can be approximated by the summation 

(19) 

(20) 

(21) 

where 

Y22 = 
i 

om c~;~(n, At) dn = f. (22) 

In the discrete-particle representations of Eq. (18) and Eq. (21), sets of M, and 
M, new particles are created (M = M, + M,), carrying circulations of y2, As/M, 
and yz2 As/M,, respectively. The n-coordinates of the former set of particles are 
selected at random from the distribution Q(n). Those of the latter set are selected 
at random from the distributions P(n, ti), i= 1, . . . . M. The ratio M,: M2 is chosen 
so that particles of each set carry approximately the same circulation. 

In the case of vortex particles, for which y (and not oa) is known, y2i cannot be 
obtained directly from Eq. (20). However, from Eqs. (8), (16), and (17) we obtain 

At t = At, Eq. (23) can be integrated with respect to n, giving 

721= Yl + Y22, (24) 

where yzz is known from Eq. (22) and y1 As, is the total circulation carried by the 
deleted particles 

I 
0 

Yl= o,(n, At) dn. (25) 
-02 

Conversely, in the case of temperature particles, where the surface temperature 
(and not its gradient) is given as a boundary condition, the analogue of Eq. (24) is 
used to obtain an expression for the heat carried by the particles representing Tt2. 
The heat carried by those representing T$, is known from the analogue of Eq. (20). 

An advantage of ABSORB over REFLECT is that the surface vorticity and the 
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surface heat flux q can be obtained from Eqs. (20), (22), (24), and their analogues, 
without further reference to the vortex-in-cell mesh 

(26) 

(27) 

where k is the thermal conductivity, T, is the surface temperature, and H, As is the 
total heat carried by the deleted particles. 

3. ONE-DIMENSIONAL DIFFUSION 

In order to test the random-particle method with the new surface algorithm 
ABSORB described in Section 2, the one-dimensional diffusion equations (Eqs. (6) 
and (7)) were solved for different boundary conditions in the domain 0 c n < 1: 

(i) y=Oatn=Oandn=l. 
(ii) o = 0 at n = 1 and JA o dn = 0.5. 

(iii) T= 1 at n=O and T=O at n= 1. 

(i) and (ii) are boundary conditions for the diffusion equation for vorticity (Eq. (6)) 
and (iii) for the diffusion equation for heat (Eq. (7)). 

A uniform distribution of unit vorticity was first considered. N particles carrying 
equal circulation (l/N) were initially uniformly spaced across the domain and then 
displaced with random walks over a succession of time steps. y was set to zero at 
both n = 0 and n = 1. Two methods were used to enforce the boundary conditions: 
REFLECT at both boundaries and ABSORB and REFLECT at n = 0 and n = 1, 
respectively. Where REFLECT was used, no new particles needed to be created. 
Where ABSORB was used, yzZ = 0 from Eq. (22), and new particles were created at 
each time step representing y2i. The new particles were located at positions based 
on the distribution Q(n) and carried a circulation equal to that of the deleted 
particles. M, the number of new particles, was made equal to the number of deleted 
particles so that N, the total number of particles, remained constant. 

Vorticity profiles, obtained using the two methods of enforcing the boundary 
conditions, are shown in Figs. 2a and b. The vorticity was obtained by distributing 
the circulation carried by the particles onto a l-dimensional grid, consisting of 50 
uniformly spaced points. In Fig. 2, N = 10000, dm = 0.2 and the results have 
been averaged over 200 time steps. REFLECT and ABSORB satisfy the boundary 
conditions equally well: an approximately uniform vorticity profile, with a small 
random component, is obtained across the domain. The importance of using the 
distribution Q(n) to position new particles is demonstrated by Fig. 2c where, in 
place of Q(n), y2i was assumed to be created at a constant rate throughout each 
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FIG. 2. Profiles of vorticity, with y = 0 maintained at n = 0 and n = 1, calculated on a l-dimensional 
grid of 50 uniformly spaced points and averaged over 200 time steps. N = loo00 and m = 0.2. At 
n = 1, REFLECT handles vortex particles which cross the boundary. At n =0: (a) REFLECT is used; 
(b) ABSORB is used, with new particles positioned using the distribution Q(n); (c)ABSORB is used, 
with the circulation carried by the new vortex particles created at a constant rate throughout each time 
step. 

time step (as is the case for y22 in Eq. (21)). The result shows a positive anomally 
in the vorticity profile near to n = 0. 

For a set of randomly distributed particles, the probability of finding a certain 
number of particles between two adjacent grid points is given by the Poisson prob- 
ability distribution, according to which the r.m.s. random component in the concen- 
tration of particles is equal to l/,/m = 0.005, where No = 200, the mean 
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FIG. 3. Profiles of vorticity, calculated on a l-dimensional grid of 50 uniformly spaced points. The 
boundary condition o = 0 is imposed at n = 1 and a constant total circulation of 0.5 As is maintained. 
M= 1000 and m = 0.2: ---: instantaneous profile after 250 time steps; ------: average 
profile between time steps 200 and 250; -: steady-state solution. 
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FIG. 4. Time histories of (a) and total number of vortex particles N and (b) the r.m.s. difference 
between instantaneous vorticity profiles and the steady-state solution S, for various values of M 
and with the two alternative surface algorithms used at n =O: -: ABSORB at n=O; 

: REFLECT at n =O. 
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number of particles per grid-point, and NA = 200, the number of steps over which 
measurements are averaged. This is consistent with the vorticity profiles of Fig. 2. 

The random-particle method was then applied to a non-uniform distribution of 
vorticity. o was set to zero at n = 1 and a constant circulation of 0.5 As was main- 
tained within the computational domain. The first condition was enforced by 
changing the sign of any particles crossing n = 1 and reflecting them back across the 
boundary. This is the method of “anti-symmetrical reflection” discussed in [12]. 
The second condition was enforced by the creation of new particles at n = 0. Results 
using REFLECT and ABSORB at this boundary were compared. 

There were initially no particles in the computational domain so that, for the first 
few time steps, vorticity was concentrated near to n = 0, where new particles were 
being created. Following this transient period, a steady-state linear vorticity profile 
was approached. Two vorticity profiles, time-averaged and instantaneous, are 
shown in Fig. 3 for a computation in which M= 1000, &%%) = 0.2, and 
ABSORB was used at n = 0. The time-averaged profile shows close agreement with 
the exact steady-state solution. The instantaneous profile again contains a random 
component. 

Time histories of the total number of particles (N) and the r.m.s. difference 
between the intantaneous profiles and the exact steady-state solution (S) are shown 
in Figs. 4a and b. Because of the anti-symmetric reflection at n = 1, particles enter- 
ing the computational domain at n = 0 and n = 1 are predominantly of opposite 
sign. If REFLECT is used at n = 0, the number of oppositely signed particles in the 
domain increases indefinitely. They do not contribute to the time-averaged vor- 

FIG. 5. The variation of s with l/(&$, using various values of M. 3 and N are respectively the 
steady-state values of S and N, averaged between time steps 200 and 250 (Fig. 4). 
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FIG. 6. Time development of the temperature profile, with T= 1 and T= 0 maintained at n = 0 and 

n = 1, respectively. M = 500 and m = 0.05: ------: numerical solutions; -: analytical 
solutions (Eq. (28)). 

ticity, but increase the random component of the instantaneous vorticity; in Fig. 4, 
the results of the computation using REFLECT show both N and S to increases 
continuously with time. The effect of using ABSORB, however, is to combine any 
oppositely signed particles which cross II = 0. In Fig. 4, following the initial 
transient period, both N and S become approximately time-independent. Their 
steady-state values, denoted by m and 3, are functions of M. 

Figure 5 demonstrates convergence of the method in which ABSORB is used at 
n = 0. The rate of convergence is of the same form as for a uniform distribution of 
vorticity: 3 cc I/,,@). Unlike the r.m.s. random component of Fig. 2, however, S 
cannot be obtained from the Poisson probability distribution since the particles are 
no longer identical. 

Finally, a non-uniform distribution of temperature was considered. T was set to 
zero at n = 1 and to unity at n = 0. The first condition was again enforced by anti- 
symmetric reflection. The second condition was enforced by the use of ABSORB at 
n =O and the creation of new temperature articles. Results are presented for 
a computation in which M= 500 and J- (2a dt) = 0.05. In Fig. 6, transient 
temperature profiles are compared with the analytical solution 

m (-1)’ 
T=l--nfi ,c - exp( -afn2j2) sin[lrj(n - l)]. 

I-1 j (28) 

Figure 7 shows time histories of N and H (Hds is the net heat in the computa- 
tional domain). The time history of H is compared with the analytical solution 

ff=& 1-8fL I z2 j=. (2j+ 1) 
exp[ -cM2(2j+ 1)2] 

1 
(29) 
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FIG. 7. Time histories of (a) the total number of temperature particles N and (b) the net heat H: 
numerical solution; ------. -: analytical solutions (Eq. (29)); ---: asymptote (H= 0.5). 

The random component in the computational results is far more evident in the 
temperature profiles than in the time history of H, where its effect is reduced by 
integration with respect to n. 

4. TWO-DIMENSIONAL VORTICITY TRANSPORT 

The convergence of the random-walk/vortex-in-cell method incorporating 
ABSORB and its efficiency relative to REFLECT were investigated for impulsively 
started flows around a circular cylinder. A radially expanding polar mesh was used 
for the vortex-in-cell calculation, defined over an annular region external to the sur- 
face of the cylinder. The mesh consisted of 129 radial and 200 circumferential lines. 
The mesh had a radial spacing at the cylinder surface equal to dm and an 
outer radius of 20 cylinder radii. These mesh parameters have previously been 
shown to be suitable in computations using REFLECT [lo]. 

The overall scheme for a time step is outlined below: 
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1. The vortex-in-cell method is used to determine velocities of vortex 
particles. 

2. The particles are moved in time At, to first order. 
3. The vortex-in-cell method is used to recalculate velocities, giving a second- 

order (Runge-Kutta) correction to the first-order displacement, and to calculate 
the circulation which must be introduced at each surface node at stage 5 to satisfy 
the zero tangential velocity boundary condition. 

4. Normally distributed random walks are superimposed onto the positions 
of the vortex particles. Particles crossing the cylinder surface are either reflected 
back (REFLECT) or deleted (ABSORB). In the latter case, the circulation 
absorbed by each surface segment is stored and used in stage 5. 

5. New vortex particles are introduced near the cylinder surface, with 
positions taken from the probability distributions appropriate to either REFLECT 
or ABSORB. 

6. The surface pressure and forces on the cylinder are calculated [lo]. 
7. Return to stage 1. 

10 

0.0 

lb) 

60000-- 

N 

40000 -. 

FIG. 8. Time histories of (a) the drag coefficient Co and (b) the total number of particles N for 
impulsively started flow around a circular cylinder, comparing the surface algorithms ABSORB and 
REFLECT. Re = 1000 and At* = 0.02: ------: ABSORB, A4 = 20; -: REFLECT, M = 3. 
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FIG. 9. Time histories of (a) the drag coefficient C, and (b) the total number of particles N for 
impulsively started flow around a circular cylinder, comparing the surface algorithms ABSORB and 
REFLECT: ------: ABSORB, M = 20; p: REFLECT, M = 5. 

Figures 8-10 show time histories of the drag coefficient (C,) and the total 
number of particles (N) for simulations of impulsively started flow, with a Reynolds 
number Re = loo0 and a time step At* = 0.02, up to a dimensionless time t* = 4 
(t* = Ut/a). The flow was considered to be symmetrical and only one half was 
simulated. In Fig. 8, the results of computations in which ABSORB has been used 
with M = 20 are compared with those using REFLECT with M = 3. The results in 
Fig. 8a show a clear difference for t * 2 0.7, with REFLECT giving a generally lower 
drag than ABSORB. Figure 8b shows that the total number of particles is similar 
for both computations. This is because of the deletion of particles crossing the 
surface with ABSORB. In Fig. 9, M has been increased to 5 for REFLECT and a 
difference in the drag coefficients now appears at later times (t* 2 2.5). The total 
number of vortices is now greater with REFLECT than with ABSORB. With 
REFLECT, at t* = 4, N approaches 65,535, the maximum vector length on the 
Cyber 205. In Fig. 10, M has been reduced to 10 for ABSORB without producing 
a systematic change in the drag coefficient. Small changes appear, however, if M is 
reduced still further. 
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FIG. 10. Time histories of (a) the drag coefficient Co and (b) the total number of particles N for 
impulsively started flow around a circular cylinder using the surface algorithm ABSORB: 
-: M = 10; ------: M = 20. 

The results in Figs. 8-10 clearly show that, at Re = 1000, the total number of par- 
ticles required for convergence is less for ABSORB than for REFLECT. Similar 
tests have shown the use of ABSORB to be advantageous over a range of Reynolds 
up to at least 104. For both algorithms, however, the minimum acceptable value of 
M was found to be Reynolds number dependent, with higher Reynolds number 
requiring more particles. In Fig. 11, time histories of the drag coeffkient up to 
t* = 10 are compared for computations, each of which uses ABSORB, with M= 10, 
5, and 3 and Reynolds numbers Re = 23 and Re = 289 (covering the range of values 
used in Section 5). No systematic changes occur as M is varied, showing that M= 3 
is acceptable at these lower Reynolds numbers. 

The maximum acceptable time step was also found to be Reynolds number 
dependent, with higher Reynolds numbers requiring smaller time steps. In Fig. 12, 
the use of time steps of At* = 0.02 and At* = 0.05 give drag coefficients with similar 
time histories, showing that At* = 0.05 is sufkiently small. 5-point smoothing has 
been used to reduce the random component of the results in Figs. 11 and 12, 
assisting in the comparisons. 

In [lo], computations using REFLECT were compared with existing numerical 
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FIG. 11. Time histories of the drag coefficient Co for impulsively started flow around a circular 
cylinder using the surface algorithm ABSORB. Al* = 0.05: (a): Re = 23, (b): Re = 289; ---: M= 3; 
------:M=5; -: M= 10. 

and experimental data. Two of these comparisons are also used here for computa- 
tions using ABSORB. In Fig. 13, a comparison is made with the accurate finite- 
difference results of Collins and Dennis [13]. The figure shows streamline patterns 
at t* = 4.8 for a starting flow with a Reynolds number Re = 500. The flow is again 
symmetrical and, for simplicity, only one half is reproduced. In order to assist in the 
comparison, the streamline with the centreline streamfunction value, is superim- 
posed on the computed streamlines. Agreement between the two numerical methods 
is good, including the reproduction of a small secondary eddy. 

In Fig. 14, a comparison is made with measurements taken from a series of flow 
visualisations [14]. The figure gives profiles of the radial velocity along the line of 
symmetry at times up to t* = 5 for a starting flow with a Reynolds number 
Re = 3000. Agreement is excellent up to t * = 2 and is reasonable at later times, 
although the computational results show a tendency for the primary eddy to roll up 
more tightly. 

409/138/Z-9 
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FIG. 12. Time histories of the drag coefficient Co for impulsively started flow around a circular 
cylinder using the surface algorithm ABSORB: (a): Re = 23, (b): Re = 289; -: At* = 0.050, M= 10; 

AI* = 0.025, M= 20. _-_---. 

(0) 

FIG. 13. Streamline patterns for impulsively started flow around a circular cylinder. Re = 500 and 
t* = 4.8. (a) finite-difference computation [13]. (b) computed by present method; ---: streamline 
with the centerline streamfunction value, from [ 131. 
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FIG. 14. The radial velocity u, along the line of symmetry behind the cylinder at Re = 3000. r is dis- 
tance from the centre of the cylinder. Experimental data [ 141: ( A ) t = 1, ( V ) t = 2, ( 0 ) r = 3, ( 0 ) r = 4, 
(O)C=$ -: computed by present method. 

5. TWO-DIMENSIONAL VORTICITY AND HEAT TRANSPORT 

In order to include forced convective heat transfer, the overall scheme for vor- 
ticity transport (using ABSORB) is complemented so that temperature particles are 
created, diffused, and convected at the same stages of a time step as the vortex par- 
ticles. The velocities of all the particles are calculated from the vortex-in-cell mesh. 

We again consider impulsively started flows around a circular cylinder. The flows 
are, however, continued beyond the transient starting period, allowing comparison 
with time-averaged experimental data. We first compare a time-averaged pressure 
distribution with a finite-difference computation [lS] and experiments [16], 
available for Re = 40 (Fig. (4.12.4) in [ 171). Good agreement is shown in Fig. 15. 

The instantaneous surface heat flux q is obtained from Eq. (27) and non-dimen- 
sionalised as the Nusselt number. At an angular position 0, 

Nu(8, t) = 2, (30) 
0 

where To is now the difference between the temperature of the surface and the back- 
ground flow. Further computations were made with Re = 23, 85, 172, and 289 and 
Pr =0.7 and 7.0 (corresponding to air and water). At Re = 23 and 40 the wake 
remains symmetrical, while at Re = 172 and 289, a Karman vortex street is 
generated (no attempt was made to trigger asymmetry). At Re= 85, the wake 
showed some asymmetric oscillation. This is consistent with the generally accepted 
observation that wake oscillation starts at around Re = 40. 
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FIG. 15. Variation of time-averaged, non-dimensional pressure C,, with angular position 0 for 
Re=40: -: computed by present method; ---: computed [ 151; 0 : experiments [16], 
(Re = 45); + : experiments [ 161, (Re = 36). 
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FIG. 16. (a), and (b) time histories of the surface-averaged Nusselt number Nu(t): -: M=5; 
------: M= 10; ---: time-averaged surface-averaged Nusselt number. (c) time histories of the drag 
and lift coefficients Co and C,: ---: time-averaged drag coefficient. 
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FIG. 17. Variation of time-averaged, surface-averaged Nusselt number NIJ with Reynolds number 
Re: 0 Pr = 7; + Pr =0.7: ------: Eq. (31) from [18]; -: Eq. (32) from [19]. 

Figure 16 shows time histories of surface-averaged Nusselt number and the drag 
and lift coefficients for Re = 289. Five-point smoothing has been used in each case 
to reduce the random component. The effect of varying the number of temperature 
particles introduced at the surface is shown in Fig. 16a; there is little systematic dif- 
ference between M= 5 and 10, the time-averaged, surface-averaged Nusselt num- 
bers NU being 10.53 and 10.49 respectively for 5 < t* < 10. A longer time history 
of the surface-averaged Nusselt number, with M= 5, is shown in Fig. 16b (with 
additional 3-point smoothing for clarity) and the corresponding variation in drag 
and lift coefficients is shown in Fig. 16~. The fluctuating lift is typical of the Karman 
vortex street, but the Nusselt number remains almost constant, in spite of the 
highly oscillatory wake. 

Finally, in Fig. 17, the time-averaged, surface-averaged Nusselt number is 
compared with two widely quoted formulae 

NU = 0.43 + 0.48 Re ‘I2 for air [18] (31) 

NU = (0.43 + 0.50 Re1/2)Pr0.38 in general [19]. (32) 

The two formulae are in only moderate agreement with each other for air, and 
computed values agree less well with Eq. (32) than with Eq. (31). 

6. DISCUSSION 

A new surface algorithm ABSORB has been incorporated into the random vortex 
method for the simulation of 2-dimensional laminar flow, in which vortex particles 
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are deleted rather than reflected if they cross a solid surface. Impulsively started 
flow around a circular cylinder has been used to test the algorithm by comparing 
results with those from the random-vortex method incorporating REFLECT, 
accurate finite-difference computations and physical experiments. The results 
demonstrate that the number of vortex particles required for convergence is sub- 
stantially reduced. The enhanced efficiency is the result of a smoother distribution 
in the circulations carried by the vortex particles. 

The vortex-in-cell method has been used for the velocity calculation. It has the 
important advantage that a boundary of the mesh may be made to coincide with 
the cylinder surface, enabling the condition of zero velocity to be satisfied 
accurately. The method may be considered a low-order implementation of the 
“vortex-blob” formulation, where each particle is given a core with a velocity 
function which may be chosen to give high-order accuracy [3, 201. However, the 
accuracy of the vortex-in-cell method, with the radially expanding polar mesh of 
this study, has been extensively tested with the starting flow around a circular 
cylinder [lo] and parameters have been chosen which give mesh insensitivity. 

We have extended the method to allow the simulation of forced convective heat 
transfer, with the vortex-in-cell calculation used for the convection of both vortex 
and temperature particles (with the blob method, the velocities for each would have 
to be calculated independently). Results for flow around a circular cylinder at con- 
stant temperature have shown reasonable agreement with experiment. The assump- 
tion of 2-dimensional, laminar flow in the cylinder wake is probably valid for the 
moderate Reynolds numbers which have been considered (up to a few hundred). 

The formulation is well suited to vectorisation for supercomputing and, for the 
code used here, typical runs of 1200 time steps required about 20 min on the Cyber 
205. The distribution of circulation from vortex particles onto the mesh was only 
partially vectorised and this could be improved [21]. The heat transfer part of the 
code was fully vectorised and made a negligible addition to computer time 
(although there were about twice as many temperature particles as vortex particles). 
This method for calculating heat transfer may, of course, be used with other flow 
simulation methods in three as well as two dimensions. 

The method may be generalised to allow arbitrary shapes [22, 231 and model 
turbulent boundary-layer regions [24]. The main attraction of this approach lies in 
the ability to compute heat transfer in flows with large-scale, unsteady structures. 
The method is ideally suited to the study of transient problems, e.g., the start-up 
and close-down of a system. 
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